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1 Introduction

What is the interplay between natural gas and renewable energy in electric generation?

The penetration of intermittent renewable generation is a key issue in the transition to

a cleaner environment and the climate change mitigation. It is clear that the use of

intermittent energy, such as wind and solar power, and its relationship with natural gas

depends on the way the power generation system is functioning. This relationship is

complex, it is simultaneously adversarial and cooperative to varying degrees according

to a number of contingencies. Natural gas is a direct competitor to renewable energy

in both contract and spot bulk power markets. At the same time, the operational flex-

ibility of gas-fired generation makes it a promising resource for balancing the natural

fluctuations in sunlight and wind, so long as a market exists to induce the gas gener-

ator to provide balancing and other grid support services. However, natural gas and

intermittent renewables are mostly seen as substitutes both in the economic literature

and the policy arena. Indeed, considering their intrinsic technical substitutability within

power generation, it is quite natural, in a first step, to consider that an increase of the

price of natural gas will increase incentives to invest in renewable generation plants. Yet,

this relationship does not seem that univocal. The unpredictable intermittency and the

comparative advantage in term of input price of renewable modes of production give

undoubtly scope for complementarities. This is particularly true for natural gas due

to its high degree of flexibility in the electricity production, as generators can almost

instantaneously generate electricity to supply the market in case of need.

We first develop a model that shows a more complex than originally thought relation-

ship between the production of electricity using natural gas and renewable intermittent

energies. Using a simple theoretical framework, we analyze the basic tradeoff an energy

producer faces when he plans to build supplementary intermittent capacity in renewable

energy and knowing that the spot natural gas market can be used to supply the market

in case of production failure or during peak periods. Then, sometimes renewable and

natural gas are complementary sometimes they are substitutable input factors. More

precisely, we find that for relatively low input price of natural gas, they are substitutes,

as the absence of input cost for renewable production is less valued. On the other hand,

for relatively large price of gas, they are complementary, as in this case the flexibility of

this fossil energy source can circumvent the intermittency of renewable energy sources

(as they cannot be stocked and are not perfectly predictable).
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We then examine these predictions using U.S. state-level data from 1998 to 2012

collected from the U.S. Energy Information Administration. Using the capacity invest-

ments in intermittent renewable energies as dependant variable, we use a panel tobit

model to study its determinants. We focus mainly on its relationship with the observed

price of natural gas, using various socioeconomic, electricity market, policy and tax

factors as control variables.

Policy implications could be derived from our analysis. It calls for a more compre-

hensive approach for policies in the energy sector. It also highlights how various policies

influencing the gas market (the rise of political tension or the signature of a free trade

agreement with a major gas exporter, the authorization to search and exploit new gas

resources using new technologies, the introduction of a tax on gas, etc.) could impact the

renewable sector. Based on our conclusions, the relationship between these two factors

of production is more complicated than originally thought and depends in large part

on the initial market conditions prevailing in the gas market, and more specifically the

price of gas.

Other studies have studied the complex nexus between natural gas and intermittent

renewable energy. However, the economic literature on the interplay between natural

gas and renewable energy is still recent and appears not so much developed. For clarity,

we can distinguish three blocks of papers: papers that explore the relationship using a

theoretical model, those who offer a policy perspective and finally papers that empirically

analyze the main determinants of the investment in renewable energies.

From a theoretical point of view this complementary relationship has been poorly

identified in the literature. Most theoretical analysis explain how choices (in terms of

capacity or inputs) between conventional and intermittent generation technologies are

made. On one hand, a social point of view is adopted, as in Ambec and Crampes (2012)

in a partial equilibrium analysis or Schwerin (2013) in a general equilibrium framework,

and on the other hand, some papers look for strategic market-based explanations as in

Bouckaert and De Borger (2013) or Aflaki and Netessine (2012). In all these analysis,

optimal choices of thermal-based primary energy and intermittent one are found to be

substitutable inputs in the sense that a raise of fuel prices increase investment in the

renewable energy, at the end. However, some nuance to this basic property have been

identified in the literature. For example, Bouckaert and De Borger (2013) show that

from a strategic point of view, capacity choices between conventional dispatchable and

intermittent generation technologies (in a duopolistic setting) may be strategic comple-
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ments when intermittent generation conditions are unfavorable. But they remain net

substitutes at the equilibrium, considering capacity cost effects. Using an electricity

peak-load pricing model, Chao (2011, p. 3951) concludes that ‘the wind generation

capacity generally substitutes the investment in combined cycle GT capacity but com-

plements the investment in gas turbine units.’. In the same vein, Garcia et al. (2012)

analyze optimal versus equilibrium mix of renewable and non-renewable technologies and

state that ‘renewable capacity should be seen as a substitute to baseload technologies

and complementary to peak generation technologies’.

These conclusions have also been acknowledged in the policy literature. For instance,

Lee et al. (2012) argues that a complementary relationship between natural gas and

renewable energy sources can be established. Technical, environmental, political but

also economic considerations explain this claim. From a strict economic point of view,

both energy sources have different risk profiles so that they may offer complementary

portfolio options. They argue that natural gas price volatility would be balanced by

stable (near zero) generating costs of renewable energy investments and, at the opposite,

natural gas plants low upfront costs counterbalance inherent risks due to intermittency

of renewable generation plants.

This complementary relationship was also studied empirically in the literature study-

ing the determinants of investment/production of renewable energies (see among oth-

ers Delmas and Montes-Santo (2011), Fabrizio (2013) or Hitaj (2013)).1 These papers

mainly focus on the impact of various policy tools (like feed-in tariffs or renewable porto-

folio standards). In some of these studies, the price of natural gas or other fossil fuels

is used a control variable. Using European data, Marques et al. (2010) find a positive

relationship between the share of contribution of renewables to the energy supply and

the natural gas price, i.e. substitutability. Based on U.S. data also, Shrimali and Kniefel

(2011) find a significant negative relationship between the share of nonrenewable (wind,

solar, biomass and geothermal) capacities to the total net generation i.e. complemen-

tarity: ‘The flexible natural gas based plants are used for overcoming the intermittency

issues inherent in renewable power generation -in particular wind, the dominant renew-

able source.’ Shrimali and Kniefel (2011, p. 4737).

Section 2 presents a simple theoretical model of generation mix under production

uncertainty. In Section 3 we study the empirical link between the gas and the renewable

1There is also a substantial literature which estimates the energy cross price elasticities based on
applied proudction theory. See Stern (2010) for a survey.
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market in the context of electricity production. We conclude in Section 4.

2 Theoretical Model

We model the basic tradeoff an energy producer faces when he (she) plans to build sup-

plementary intermittent capacity in renewable energy, knowing that the spot gas market

can be used to supply the market in case of production failure or during peak periods.

Similar type of tradeoffs have already been analyzed in more general microeconomic

settings (see for instance in Blair (1974) or Abel and Eberly (1994)). Basically from a

general point of view, the main features of our framework are twofold: First, instead of

bearing on input prices uncertainty does concern the maximal level of output achievable

using a given technology (i.e. renewable capacity). Second at the margin, the more

secure and flexible source of supply (here, natural gas) is always more expensive than

the risky or unsecured technology (here the renewable one). Hence, the energy producer

will balance the benefit of producing electricity at a zero marginal cost and the cost

created by the risk of having to use the spot market to produce electricity with gas.

Let k ≥ 0 be the additional investment into intermittent capacities to be installed (in

terms of capital cost).2 We assume that this investment is normalized as to represent

an additional capacity that generates f(k) kWh where f(k) is a positive increasing

concave production function, so that f(0) = 0. We denote φ = f−1 such that φ(y)

depicts the necessary renewable capacity to generate y kWh. This assumption implies

that investment opportunities exhibit non increasing returns in terms of generation. We

denote by x ∈ {0, 1} the intermittence factor such as Prob(x = 1) = π (windy, sunny)

and Prob(x = 0) = 1 − π (cloudy, gloomy, lull). Therefore, the available electricity is

xf(k).

The gas input (spot) price is assumed certain (or equal to its expectation) and is

denoted by w while qx denotes the gas short term supply (which is adjustable). At

the time of delivery, the energy demanded (which is, for simplicity, deterministic and

exogenous) is given by Q > 0 and the output price is p > w.

Let U : R+ → R, x 7→ U(x) be the firm’s owner von Neumann–Morgenstern utility

function, U is strictly increasing, strictly concave.

2We assume that (an infinite amount of) gas turbines have been already installed and that these
costs are sunk.
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For a competitive producer, the problem is to choose ex ante q0, q1 and k such that

its expected profit Π = πU (pQ− wq1 − k) + (1− π)U (pQ− wq0 − k) is maximized,

that is:

max
k,q0≥Q,q1≥max{0,Q−f(k)}

πU (pQ− wq1 − k) + (1− π)U (pQ− wq0 − k)

Let us consider what is the state contingent decision q∗x that the producer could take if

the state of nature x occurs. Clearly, as fully derived in the Appendix, due to the cost

of q∗x in each state of nature and the covered market condition, we have that q∗0 = Q and

q∗1 = max{0, Q− f(k)}.

Thus, the competitive producer’s problem is to choose ex ante k such that

max
k

πU (pQ− w (max{0, Q− f(k)})− k) + (1− π)U ((p− w)Q− k)

Then we have to consider two alternative cases, whenever the renewable capacity would

be chosen to be sufficient to cover the realized demand or nor. In the former case, i.e.

if k ≥ φ(Q), then the first order condition is such that:

−{πU ′ (pQ− k) + (1− π)U ′ ((p− w)Q− k)} < 0

The optimal investment will be k∗ = φ(Q).

The second case to consider is the renewable capacity cannot cover the realized

demand i.e. if k < φ(Q). Then the first order condition for an interior solution becomes

the following:

(1) π (f ′(k)w − 1)U ′ ((p− w)Q+ wf (k)− k)− (1− π)U ′ ((p− w)Q− k) = 0

This condition has a clear interpretation. Whenever it is optimal for the producer to

invest in an additional renewable capacity, he balances the marginal expected net reward

of having this capacity available to produce electricity at a zero unit cost when demand

occurs i.e. π(f ′(k)w − 1) and the marginal expected cost of having to buy extra gas on

the spot market (which depends on his attitude towards risk U ′ (.)).

Let us now examine some basic characteristics of this interior solution. From (1) we

see that when w = 0 then the first order condition becomes −U ′ (pQ− k) < 0. In this



7

case, we have that k∗ = 0. Then for k = 0, Eq. (1) can be rewritten as:

[πf ′(0)w − 1]U ′ ((p− w)Q)) ≤ 0

From this, one can define w = 1/ (f ′(0)π) so that for w ∈ [0, w], additional investment

in renewable capacity is equal to zero.

When w > w, let k(w) be the solution of Eq. (1) if k (w) < Q. Rewritting (1) yields

(2) f ′(k)w = 1 +
1− π
π

U ′ (A)

U ′ (B)

Differentiating Eq. (1) with respect to w leads to

(k′ (w) f ′′(k)w + f ′(k))U ′ (B) +
[
k′ (w) (f ′(k)w − 1)

2 − (f ′(k)w − 1) (Q− f(k))
]
U ′′ (B)

= −1− π
π

(k′ (w) +Q)U ′′ (A)

where A = (p− w)Q − k and B = A + wf (k). Hence, this static comparative can be

simplified as follows

(3) k′ (w) = −πf
′(k)U ′ (B) + (1− π)QU ′′ (A)− π (f ′(k)w − 1) (Q− f(k))U ′′ (B)

πf ′′(k)wU ′ (A) + π (f ′(k)w − 1)2 U ′′ (B) + (1− π)U ′′ (A)

The denominator is negative (as the objective is concave) but the numerator has not

a constant sign. Our main point is to assess if and when it could be the case that

k′ (w) < 0, i.e. can renewable intermittent energy and natural gas be complementary

input factor. We argue that this complementarity is intrinsically related to two forces:

the intermittence nature of renewable energy we consider and the supply risk this creates.

Indeed if the producer were risk neutral (i.e. U ′ is constant), from Eq. (1) it can easily

be derived that k (w) = (f ′)−1 (1/ (πw)) which is clearly an increasing function3 of w: on

that basis renewable energy and natural gas are substitutes in the producer’s electricity

mix.

If renewable energies were not intermittent anymore4, then there is no risk to be

failing due to a cloudy, gloomy or lull situation. This is the case when π = 1 and again

3This can be seen putting U ′′ = 0 in Eq. (3).that is k′ (w) = − f ′(k)
f ′′(k)w > 0.

4For example, as a consequence of technological advances that make it possible to stock wind or
solar energy or the electricity it produces.



8

the renewable energy and natural gas are substitutes since

k′ (w) = −f
′(k)U ′ (A)− (f ′(k)w − 1) (Q− f(k))U ′′ (A)

f ′′(k)wU ′ (A) + (f ′(k)w − 1)2 U ′′ (A)
> 0

Moreover, one can check that for w → w then k′ (w) > 0. Indeed, we have proved above

that k∗(w) = 0 so that the numerator of k′ (w) becomes πf ′(0)U ′ (A) > 0. Hence, in

all these cases, the marginal benefit of using free inputs to produce electricity is always

larger than the marginal cost of not having these free inputs due to their unpredictable

intermittent nature. We sump up these first results.

Result 1. The renewable energy and natural gas are substitutable inputs in the electricity

mix if at least one of the following three situation arises : (i) the producer is risk neutral;

(ii) there is no intermittency or (iii) the natural gas price is very low (w is in a right

neighborhood of w) .

Hence, whenever the producer is risk averse, intermittence is an issue or natural

gas price are not very low, complementarity between renewable energy and natural gas

factor can be considered.

From Eq. (3), one can see that the sign of k′ (w) is given by the sign of the numerator.

Using Eq. (2), this numerator rewrites:

U ′ (A)

[
πf ′(k)

U ′ (B)

U ′ (A)
+ (1− π) {(Q− f(k))r (B)−Qr (A)}

]

where r (Π) = −U ′′(Π)
U ′(Π)

> 0 is the Arrow-Pratt measure of absolute risk-aversion for a

profit Π. Remark that the first term between brackets is always positive, hence only the

sign of the second term can be negative depending on whether r (A) /r (B) is sufficiently

high (at the optimum), that is

(4)
r (A)

r (B)
>
Q− f(k)

Q

In particular, this condition is always verified if the utility function is DARA as r(A)
r(B)

>

1 ≥ Q−f(k)
Q

. Unfortunately, this is not a sufficient condition for k′ (w) to be negative.

We therefore have the following result.

Result 2. Under the condition described by Eq. (4), the renewable energy and natural

gas may be complementary inputs in the electricity mix.
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Result 2 illustrates that depending on the strength of risk aversion, the weight of

intermittency and the level of the natural gas price, additional investment in renewable

capacity can be decreasing as the natural gas price is increasing. In this setting, the

marginal cost related to the unavailability of wind or sun increases faster than the

marginal benefit of having access to a free input. After a price threshold, an increase in

the price of gas will lead to a decrease in investments into renewable capacities. However,

in our general framework it is not possible to give clear cut conditions for such a result,

without considering a given class of VNM utility function.

In the following we give two standard examples for which Result 2 occurs.

Example 1. Let us consider a CARA utility function where U (z) = − exp(−θz) and

θ ≥ 0 where θ > 0 is the risk aversion parameter and the linear production f (k) = ak

where a > 0. We can see that

k(w) =

{
0

min{Q, k̂(w)}
if

w < 1
aπ

w ≥ 1
aπ
> 1

where

k̂(w) =
1

wθa
ln

(
π(wa− 1)

1− π

)
Differentiating k̂(w) with respect to w gives

k̂′(w) =
1

w

[
1

θ(wa− 1)
− k̂(w)

]
We see that there is a unique w̄ : k̂′(w̄) = 0 when k̂(w̄) = 1

θ(w̄a−1)
(it is a transcendental

equation). Hence k̂(w) is increasing (resp. decreasing) if w < w̄ (resp. w > w̄), as

depicted in Figure 1.

Example 2. Let us consider a DARA utility function such that U (z) = ln(1 +

θz) where θ > 0 is a parameter that increases the risk aversion measure and a linear

production function f (k) = ak where a > 0. We now have that

k̂(w) =
(πwa− 1)(1 + θ(p− w)Q)

θ(wa− 1)



10

w

k̂(w)

0 w̄w

Q

Figure 1
Additional renewable capacities as a function of the price of natural gas (Examples 1 and 2)

Black line: capacity , red line: demand

Similarly to Example 1, the threshold value for the natural gas price equals

w̄ =
1

a

[
1 +

√
(1− π) (θQ(ap− 1) + a)

πθQ

]

Again k̂(w) is increasing (resp. decreasing) if w < w̄ (resp. w > w̄).

3 Empirical Model

We now study the empirical link between the non-renewable and renewable market in the

context of electricity production. We focus more precisely on the relationship between

additional investments in intermittent/renewable capacities of producing electricity and

the input price of the non-renewable technology. Here, we will mainly consider the

price of gas. Figure 2 represents the scatterplot of these observations for 49 U.S. states

between 1998-2012, as well as a quadratic fit (only considering strictly positive additional

renewable capacities). From this graphic, a non-linear relationship seems more plausible

than a linear one. This observation tend to support our theoretical insight according
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to which a bell-shaped curve gives a better fit for the link between the price of gas

and investment in renewable energies. In the following, we show that these suggestive

evidences are robust to various empirical analysis.

Figure 2
Scatterplot of Additional Renewable Capacities (in log of MW) and Average Natural gas

Price (in log of USD/MMBtu) for all U.S. states between 1998 and 2012, with a quadratic fit

3.1 Methodology

To test the main result of our theoretical framework, we use a U.S. state-level data from

1998 to 2012. One major concern of our data is the high number of censored observa-

tions, as investments in new capacities are bounded to be weakly positive. Out of our

732 observations5, 445 of them are equal to zero. Empirical methods such as random

and fixed effects panel models result in biased and inconsistent estimates, as they are

not able to account for the possible qualitative difference between corner and strictly

positive observations. To accommodate for these nonnegative dependent variables, we

5Due to three missing price of gas observations, we had to drop them. Despite this, we analyze our
data as a balanced panel.
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apply a censored tobit model for panel data with random effects.6

Let the vector Xit represent all our explanatory variables, including the gas price vari-

ables, in a state i = 1, ..., N in time t = 1, ..., T . We can define the latent, unobservable,

additional investment in capacities y∗it as:

y∗it = αi +Xitβ + εit

Where the error terms εit are i.i.d. N (0, σ2
e) and the random effects αi are i.i.d N (0, σ2

a).

We estimate a censored panel tobit model where this latent variable determines the value

of the observed variable yit which can be defined as:

yit =

{
y∗it if y∗it > 0

0 if y∗it ≤ 0

Due to the impossibility to compute fixed effects with this approach, our unobserved

heterogeneity is controlled for using a random heterogeneity specific component for each

state. This assumption implies that state specific effects are uncorrelated with our

independent variables.

Due to the absence of closed form solutions, the log likelihood is computed using a

numerical approximation (Gaussian quadrature). Following a change in the number of

quadrature points, estimates tend to be unchanged. This can be explained by our sample

size and large within group observations. Hence, our results seem to be reliable. Further

robustness checks are derived in the end of this section.

3.2 Data

3.2.1 Dependent Variables

As analyzed previously in the literature, we focus on marginal capacity investments, in

opposition to accumulated investments, market share or generation. Using this depen-

dent variable allows us to analyze more clearly the outcome of the strategic investment

6In our robusteness analysis, we depart twice from this approach. First, we transform our dependent
variable into a dummy outcome which describes whether or not additional investments have occurred.
To analyze this case, we use a probit model. Second, there is no sufficient statistics to allow the fixed
effects to be conditioned out of the likelihood (Stata (2009)). Hence, it is not possible to compute
conditional fixed effects. Despite being biased and inconsistent, we compute unconditional fixed effect
estimators. In both cases, we show that our main results hold.
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decision, net of anterior years. We focus on capacity investments rather than on the

generation of electricity, as this outcome variable is not influenced by the unpredictable

year-to-year weather conditions. Finally, following our theoretical model, we focus on

the aggregate of two renewable sources: solar and wind energies. They have in common

to be non-flexible intermittent and renewable sources of production. Compared with

electricity produced from hydropower, biofuel or biomass, they do not create large neg-

ative environmental externalities through their capacity installments, the production of

electricity or the supply of inputs.

We collected this data from the U.S. Energy Information Administration (2014). It has

the double advantage of having state level data on both renewable capacities and the

price of gas. The information was obtained from EIA-860 form. To consider both the in-

creasing number of units producing electricity and the increase in productivity observed

throughout the years, we multiplied the number of generators installed by its nameplate

capacity (i.e. maximum rated output of a generator which is expressed in megawatts).

3.2.2 Independent Variables

In relationship with our theoretical framework, our focus is on the price of gas, which

is the unit price of the main input in the production of electricity. Other dependent

variables are classified under three categories (socioeconomic, electricity market and

policy/tax factors) play the role of control variables. This is a stark contrast with the

literature which has mainly concentrated its attention on the impact of tax and policy

tools on investments in renewable energies, using, among other things, price variables as

control variables. Even though governments cannot directly influence this price, which

is the result of market forces, several political decisions can have an important, indirect,

impact on the price of gas at the equilibrium: signing of a trade agreement or tense

diplomatic relationship with a gas trade partner, tax on gas, discovery of new impor-

tant natural resources, introduction of legislation allowing the use of new extraction

techniques, etc.

1. Price of gas

Our price of gas data has been collected from EIA (2013). It is (the log of) the

average price paid (in nominal dollars per million Btu) by the electric power sector

for natural gas (including supplemental gaseous fuel) for each states and years

observed. It includes the cost of natural gas as well as insurance, freight and tax
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expenses. In order to study the relationship between the input price of natural

gas and the investments in renewable energies, we consider both a linear and a

quadratic term. As their might be lags between the price observed (or estimations

of it) at the time the investment was decided and the installations could start

functioning, we include up to four-year lags. These lags can be explained by red

tapes or by construction timing and delays. Due to multicolinearity between these

price variables, we focus on our most representative results where a lag of one

year is observed.7 Our results carry on further but standard errors are impacted,

leading to lower significance levels.

Even though this was not the main focus of their work, previous studies have

found diverging results while analyzing this relationship. Some (see a.o. Marques

et al. (2010)), have found a positive relationship, meaning that these two modes of

productions are substitutable. Others like Marques and Fuinhas (2011) or Shrimali

and Kniefel (2011) have observed a negative link which means that the two are

complements. We show that, below (resp. above) a threshold price, they tend to

be substitutes (resp. complements). Hence, we expect the linear coefficient to be

positive and the quadratic one to be negative, i.e. an inverted-U curve.

2. Socioeconomic factors

The first two socioeconomic factors, population and GDP per capita, were re-

spectively obtained from the U.S. Census Bureau (2014) and the U.S. Bureau of

Economic Analysis (2014). Population is the (log of) number of inhabitants and

GDP per capita is the (log of) per capita gross domestic product in nominal value.

Both coefficients are expected to be positive. The first because it is a proxy for

the total demand for renewable energies. The second because emission reductions,

engendered by renewable energies, are a normal good.

Using electoral data, the other two socioeconomic variables are proxies for the taste

of inhabitants. Democratic governor is a dummy variable which takes the value 1

when the state governor is from the democratic party. League indicator is an in-

dex based on the scorecard produced by the League of Conservative Voters (2014)

which lists the greenness of the votes in the house and senate on environmental

issues. It is a categorical/ordinal variable between 0 and 3 where the last category

holds for the most environmental friendly states and 0 for the least. Both these

variables should have a positive impact on investments on renewable capacities.

7Due to the quadratic terms and the lags, up to ten gas price variables where simultaneously con-
sidered.
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3. Electricity market factors

The first three factors (State size, wind availability and sun availability) are all

measures of the feasibility of installing wind and solar panel farms. These are the

only variables which are fixed over the years in our data. We take the logs of

each of them. Larger states are expected to host more additional capacities. Wind

availability is the wind generation potential for each state at 80 meters with ca-

pacity factors of at least 30% measured in GWh/year, as provided by the National

Renewable Energy Laboratory (2011). Sun availability is the solar radiation for

flat-plate collectors facing south at a fixed tilt (kWh/m2/day), as measured in the

largest city of each state (National Renewable Energy Laboratory (2010)). We

expect these variables to positively influence our dependent variable.

Growth in electricity sales is the growth in the amount of electricity sold for each

state and is a measure of the incremental demand for electricity. Price of electricity

is the (log) of the price of electricity sold by state producers of electricity. Being

a good proxy of the returns derived from the capacity investment, the coefficient

of this variable is expected to be positive. Production share renewable energies

and production share nuclear energy stand, respectively, for the market share of

electricity produced using intermittent and renewable sources and using nuclear

sources. Due to agglomeration effects in the production of renewable energies, the

former is expected to be positive. On the other hand, the latter is expected to be

negative, as a higher share of the electricity produced with nuclear energy makes

it less interesting for renewable investments, as it is complicated to easily switch

from one source of production to the other. All these informations were obtained

from the U.S. Energy Information Administration (2014) database.

Experience with ISO/RTO is the cumulative number of years of experience that,

or at least a share of, a state has been active in a Regional Transmission or-

ganization/Independent System Operator. These institutions aim at easing the

transmission of electricity over interstate areas. Computed from the Federal En-

ergy Regulatory Commission (2014), this variable is a proxy of the grid quality

and how easy it is possible to switch from one to the other source of electricity

production to the other. Due to the intermittent nature of our renewable energies,

more experience in such an organization is expected to lead to more investments

in capacities.

4. Policy and tax factors

While these factors are the ones of concern in the literature studying the determi-
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nants of investments in renewable energies, they play the role of control variables

in our setting. To facilitate the readability of our main results, we use two aggre-

gate variables based on information derived from the Database on State Incentives

for Renewables and Efficiency DSIRE (2014). On the one hand, policy is the num-

ber of regulatory and policy tools (from public benefit funds, renewable portofolio

standard, netmetering system, interconnected standard, required green power op-

tion and feed in tariff) implemented to promote investments in renewable in each

year for each of the states. On the other hand, tax is the number of financial incen-

tives available (from personal, corporate, sales and property tax cuts). We expect

that these two categorical variables should have a positive impact on additional

investments.

The summary statistics of our dependent and independent variables can be found in

Table A1 of the Appendix.

3.3 Main results

The main results of our paper are exposed in Table 1. Each of the three regressions looks

at the determinants of additional renewable capacities. They differ on two dimensions:

whether or not the square of price of gas and yearly dummies are considered. Regression

(1) has none of the two. Regression (2) estimates the parameter of the square of price

of gas whiteout year effects. Regression (3) considers both the square of price of gas

and yearly fixed effects in its specification. In order to present these results, we proceed

in two steps. First, we focus the estimated parameters for the price of gas parameters.

Then, we analyze the estimates for our control variables.

In regression (1), where only a linear term is used for price of gas, we obtain a neg-

ative coefficient sign which has no significant impact on our dependent variable. Hence,

based on this result, we cannot conclude that gas and renewable energies are comple-

ments or substitutes in our dataset. In the next two regressions, we have that the linear

and quadratic estimates for price of gas are significant and have rather similar levels.

In regression (2), the former is significant at a 1% level and the latter at a 5% level. In

regression (3), considering year dummies, significance levels drop respectively to 5% and

10%. Hence, year effects slightly negatively influence the strength of this result. These

results give support for the idea that the relationship between the price of gas and ad-

ditional renewable capacities is non-linear. The linear coefficient estimates is positive



17

Table 1
Additional renewable capacities as continuous variable

(Tobit model)

Variables (1) (2) (3)

Price of gas −0.558 7.963∗∗ 8.747∗∗

(0.604) (3.317) (4.457)
Price of gas (squared) −2.650∗∗∗ −2.490∗

(1.012) (1.375)
Population 1.003 0.965 1.388∗∗

(0.623) (0.612) (0.573)
GDP per capita 7.192∗∗∗ 6.188∗∗∗ 2.427

(2.189) (2.208) (2.614)
Democratic governor −0.164 −0.074 0.080

(0.437) (0.438) (0.419)
League indicator 0.016 0.109 0.349

(0.261) (0.262) (0.273)
State size 1.313∗ 1.392∗ 0.657

(0.760) (0.750) (0.730)
Wind availability 0.857∗∗∗ 0.827∗∗∗ 0.981∗∗∗

(0.222) (0.218) (0.204)
Sun availability 5.978 5.336 1.927

(4.244) (4.178) (3.946)
Growth in electricity sales −10.335∗ −12.732∗∗ 0.927

(5.402) (5.439) (5.974)
Price of electricity 4.410∗∗ 4.200∗∗ 1.150

(2.002) (1.993) (1.812)
Production share renewable energies −0.099 0.338 −10.659

(7.702) (7.652) (7.381)
Production share nuclear energy −7.086∗∗ −6.894∗∗ −5.452∗

(3.406) (3.361) (3.097)
Experience with ISO/RTO 0.333∗∗∗ 0.335∗∗∗ 0.173∗∗

(0.078) (0.078) (0.080)
Policy 0.656∗∗∗ 0.607∗∗∗ 0.178

(0.214) (0.213) (0.210)
Tax 0.929∗∗∗ 0.900∗∗∗ 0.382

(0.271) (0.277) (0.267)
Constant −86.013∗∗∗ −87.483∗∗∗ −66.600∗∗∗

(13.271) (13.116) (14.651)

Year effects no no yes
Log likelihood −963.208 −959.671 −924.030
Pseudo R2 0.408 0.409 0.421

Sample: 732 observations - 49 states - period 1998-2012
(Log of) additional renewable capacities as a dependent variable (445 left cen-
sored observations)
Standard errors are in parenthesis
∗significant at 10% ∗∗, significant at 5% and ∗∗∗ significant at 1%
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while the quadratic one is negative. Hence, we have an inverted-U relationship between

the two variables. This means that, for relatively low gas prices, a marginal increase in

price tends to increase the capacity investments in the renewable energy production. In

this case, they can be seen as substitutes. After this price threshold, the reverse holds

and they are complements, as a marginal increase in gas prices tends to decrease invest-

ments in the renewable mode of producing electricity. The price threshold is defined

by the maximum of our inverted-U curve. In regression (2), it is at 1.5 and at 1.75 in

regression (3), slightly to the left and to the right of the mean of price of gas. Note that

according to the likelihood ratio test performed, the last specification, with year effects,

is the most preferred one.

The coefficient estimates for socioeconomic control variables tend to be similar for our

three specifications and to be as expected. We see that more populated states have

higher levels of investment in new capacities. Although this is only significant in the

case with year fixed effects. The coefficient estimates for GDP per capita are also posi-

tive but tend to become insignificant as soon as year fixed effects are considered. Both

our taste proxies (democratic governor and league indicator) have no significant impact

on additional renewable capacities.

Wind availability is the first parameter related with the electricity market. We see that

all three estimates are positive and significant at a 1% threshold. This is in contrast

with the estimates for sun availability which are positive but not significant. This can

be explained by the fact that investments in solar energy tend to be very small com-

pared to the ones in wind energy in our sample. In regression (1) and (2), we have that

a higher growth in electricity sales leads to lower investments in renewable capacities.

One explanation for this results is that states with high increase in demand for electric-

ity prefer to invest in non-intermittent modes of production to supply the market and

ensure that it is fully covered. However, this effect becomes insignificant in regression

(3) as, due to the relatively high within variation in this parameter gets absorbed by the

year dummies. As it increases the benefits of investments in renewable capacities, the

sign of price of electricity is, in line with our expectations, positive. Although, the effect

becomes insignificant with year dummies. While production share renewable energies is

not significant in any of our cases, production share nuclear energy is always significant

and has, as expected from our discussion in the previous subsection, a negative sign.

Finally, we see that the experience accumulated with an ISO and a RTO is important

in explaining the rise in renewable capacities.

Both our policy and tax factors have a positive impact on our dependent variable. How-
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ever, this impact becomes insignificant as soon as yearly effects are considered.

In conclusion, these results tend to confirm our theoretical prediction. While, for rela-

tively low prices of gas, renewable energies and gas are substitutable inputs, they are

complementary for large prices of gas. Our theoretical explanation is that for larger

price of gas, the cost related with the unpredictable intermittency of renewable energies

cannot compensate its main economic benefit of using a freely available input.

3.4 Robustness analysis

We have used other specifications to test the robustness of these results, the regressions

of which are exposed in Table 2. We proceed in three steps. First, we consider several

other model specifications, keeping the same endogenous variable as before. Second, we

assume different endogenous variables than additional renewable capacities as a contin-

ious variable. Finally, we discuss the issue of endogeneity. These robustness analysis

tend to confirm, and further strenghten, our main results. As there are few changes in

the parameter estimates of our control variables, we focus on our variables of concern.8

Many other model specifications have been assumed, keeping our original dependent

variable. We only focus on the most important. First, in our main results, we have

considered for each state a random component to consider how state specificities might

impact our independent variable. With tobit panel data, it is not possible to consider

state specific fixed effects. However, it is possible to compute unconditional state fixed

effect although estimates are biased and inconsistents. Results are shown in regression

(4). On the one hand, we see that the parameter estimate for price of gas is positive

and significant at the 10% level. On the other hand, we have that, for our quadratic

term, the estimate is significant at the 5% level and is negative. This is in lign with our

main results.

In regression (5), we use another price variable than the one for natural gas. There, we

use the average petroleum price (EIA (2013)). Looking at cases with both a linear and

a quadratic term and with only linear term, we find that the specification with the best

fit and the most significant result is the one with a lag of one year and only a linear

term. We see that a one percent increase in the average petroleum price leads to a 1.6%

increase in investment in renewable capacities. Hence, we have that, considering the

8Note however, that the strenght of our results are, in some of these robustness checks, impacted
when year dummies are part of the specification. Hence, part of these additional results are influenced
by yearly changes in the level of our variables.
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Table 2
Robustness analysis

Variables (4) (5) (6) (7)

Price of gas 5.415∗ 2.175∗ 12.844∗∗

(3.163) (1.144) (5.566)
Price of gas (squared) −1.983∗∗ −0.771∗∗ −3.779∗∗

(0.962) (0.358) (1.705)
Average petroleum price 1.571∗∗∗

0.421
Population 28.854∗∗∗ 1.370∗∗ 0.219 0.554

(7.062) (0.564) (0.147) (0.962)
GDP per capita 0.167∗ 3.752∗ 1.345∗ 9.029∗∗

(2.711) (2.122) (0.705) (3.715)
Democratic governor −0.043 −0.171 −0.060 2.132∗∗∗

(0.428) (0.431) (0.170) (0.766)
League indicator −0.104 −0.085 0.023 0.696

(0.268) (0.252) (0.104) (0.465)
State size 1.152∗ 0.284 2.308∗

(0.689) (0.194) (1.190)
Wind availability 0.842∗∗∗ 0.142∗∗∗ 1.450∗∗∗

(0.2) (0.054) (0.348)
Sun availability 3.205 0.728 6.377

(3.765) (1.024) (6.604)
Growth in electricity sales −9.295∗ −4.209 −4.485∗∗ −19.415∗∗

(5.241) (5.381) (2.027) (9.828)
Price of electricity 5.764∗∗ 3.301∗ 0.421 6.780∗∗

(2.296) (1.879) (0.607) (3.27)
Production share renewable energies −12.382∗ −0.293 35.622∗∗∗ −7.832

(7.289) (7.551) (11.588) (13.796)
Production share nuclear energy −0.975 −6.835∗∗ −1.418∗ −6.206

(5.248) (0.859) (9, 303) (3.077)
Experience with ISO/RTO 0.485∗∗∗ 0.298∗∗∗ 0.078∗∗ 0.427∗∗∗

(0.085) (0.078) (0.036) (0.137)
Policy 0.327 0.640∗∗∗ 0.179∗∗ 0.461

(0.215) (0.209) (0.085) (0.379)
Tax 0.924∗∗∗ 0.828∗∗∗ 0.210∗∗ 0.977∗∗

(0.309) (0.271) (0.099) (0.478)
Constant −1248.580∗∗∗ −74.097∗∗∗ −17.627∗∗∗ −121.928∗∗∗

(277.578) (11.800) (3.860) (21.060)

State fixed effect yes no no no
Log likelihood −870.638 −956.809 −268.604 −1279.88
Pseudo R2 0.434 0.408 0.452 0.381

Sample: 732 observations - 49 states - period 1998-2012
Standard errors are in parenthesis
(Log of) additional renewable capacities (445 left censored observations) for regressions (4) and
(5), Dummy of additional renewable capacities (0/1) for regression (6) and (log of) additional
renewable generations (408 left censored observations) for regression (7)
∗ significant at 10%, ∗∗ significant at 5% and ∗∗∗ significant at 1%



21

average input price of electricity, that it is a substitute for renewable energies.

In addition to this, we have also considered various ways to specifiy policy and tax. We

have used individually each of the items composing it, looked at experience rather than

presence of a policy or tax. Our main conclusions are not influenced by these changes.

As done in regressions (6) and (7), we have also checked how our results are changing

with respect to different independent variables. First, using the same data, we have

changed additional renewable capacities into a dummy variable where one means that

some investments were made. This case was treated as a panel probit model with random

effects. We see from regression (6), where marginal effects at the means are computed,

that the estimates for the linear and squared terms of price of gas have the expected

signs and are both significant (only at the 10% level for the linear term). Note that esti-

mates represent the marginal effects at means. Even though the levels of the estimates

differ from the ones before, they tend to give a maximum of the inverted-U relationship

at a similar price level.

In regression (7), we look at the determinants of additional electricity production from

renewable sources instead of additional capacity investments, also using data from the

U.S. Energy Information Administration (2014). We find very similar results, as the

linear term for price of gas is positive while the quadratic one is negative and the max-

imum of the quadratic approximation is at 1.7. They are both significant at the 5%

level. Hence, this means that our results carry on further to the additional production

of renewable energies.

Note as well that similar results prevail if we only consider wind as a renewable mode

of production. However, only considering solar energy leads to results which are not

significant. This can be explained by its negligeable presence in the total production of

electricity.

One last important issue to discuss is endogeneity. In our context, the main potential

source of endogeneity is reverse causality. As argued by Wiser and Bolinger (2007),

investments in renewable energies can impact the gas market as it shifts its demand.

On the one hand, it could reduce on the overall demand for natural gas, leading to a

downward pressure on prices. On the other hand, due to the unpredictable intermittency

of renewable energies, the demand for natural gas can be concentrated in times when

there is no wind nor sun. These temporary shifts can lead to a higher price dispersion.

Hence, the overall impact on the price of natural gas is indeterminate.

There are several reasons that can explain why endogeneity does not undermine our

main results. First, the scope for reverse causality is limited by the fact that we look at
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marginal rather than total investments in renewable capacities. The impact on the price

of natural gas is much more limited due to the relatively small level of marginal invest-

ments compared with the total accumulated investments. Second, our main specification

considers a one year lag between price of gas and additional renewable investments. It

is unlikely that the formation of price expectations in the gas market is impacted, one

year ahead, by investments that produce electricity only by then, especially knowing

the important cost of natural gas storage. Finally, using a two stage approach, we have

empirically tested the presence of endogeneity. As lagged price of gas variables were cor-

related with our independent variable of concern but uncorrelated with our dependent

variable, we used them as instrumental variables. Performing the Durbin-Wu-Hausman

test, we find that the hypothesis according to which price of gas suffers from endogeneity

is rejected.

4 Conclusion

This paper sheds some new theoretical and empirical lights on the relationship between

renewable and non-renewable intermittent modes of producing electricity. We study the

degree of substitutability and complementarity between these two sources of energy. Our

main finding is that this relationship is not linear. This is at least true for sun/wind

power energies which, due to the unpredictable intermittency from these renewable nat-

ural resources, can be complementary to natural gas, as it can very effectively supply

the market on demand. Using U.S. data at the state level, we find that an increase

in the price of natural gas can lead to a decrease in the investments into intermittent

renewable capacities.

Our theoretical model gives an explanation behind the bell-shaped relationship be-

tween the price of gas and capacity investments in renewable energies. It highlights the

trade-off between the relative input price advantage of wind/sun power energies and the

uncertainty related to the unpredictable intermittency of these energies which must be

compensated in the blink of an eye by natural gas.

These results suggest several policy considerations. Our conclusions support a com-

prehensive energy supply policy approach. Investments in renewable and non-renewable

modes of electricity production should be thought jointly due to the various intercon-

nections between the two. It is of utter importance for the renewable sector to keep
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an eye on the gas market. Direct (such as taxes or subsidies) or more indirect policies

targeted to the gas market can impact them significantly. New free trade agreements

or tense political relationships with major gas exporting countries as well as authoriza-

tions to search and exploit natural gas resources can have an ambiguous effect on the

investments in the renewable sector. Intermittent renewable and non-renewable energies

can be both friends and foes. It depends on the initial price level of gas. Defining more

precisely the price threshold separating these two scenarios is outside the scope of this

paper. We hope that our work will lead to further empirical research on this issue. This

could be particularly interesting to do this with a more comprehensive database.

Another interesting question concerns how this relationship will evolve through time.

Is there scope for a higher degree of complementarity between these two modes of pro-

ducing electricity? Further investments in the electricity grid and technological advances

will most likely improve the interconnections between the various production units, state

and country wide. However, this might be counterbalanced by the evolution of tech-

nologies related with the storage of electricity or the imperfectly predictable nature of

renewable energy sources. It will be interesting to further analyze how these two forces

will evolve.
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Appendix

Contingent decisions. Ex post, if x = 1 then profit will be Π1 = pQ− wq1 − k with

q1 ≥ 0 because renewable capacity installed k is used to serve the demand. If f(k) ≥ Q,

that is k ≥ φ (Q), q∗1 = arg maxq1 Π1 = 0. While if k < φ (Q), then q1 ≥ Q−f (k) because

capacity k is too short to serve the overall demand Q. We have that q∗1 = Q− f(k). As

a result q∗1 = max{Q − f(k), 0}. If x = 0 then profit will be Π0 = pQ − wq0 − k with

q∗0 ≥ Q such that q∗0 = arg maxq0≥Q Π0 = Q.

Statistic tables
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Table 3
Summary statistics

Variable Mean Standard Deviation Min Max

Additional renewable capacities (log) 2.648 3.709 0 13.045
Price of gas (log) 1.585 0.421 0.392 2.469
Population (log) 15.136 1.007 13.104 17.454
GDP per capita (log) 3.666 0.230 3.069 4.283
Democratic governor 0.443 0.497 0 1
League indicator 1.802 1.313 0 4
State size (log) 11.731 1.092 8.295 14.357
Wind availability (log) 10.456 3.744 0 15.692
Sun availability (log) 1.431 0.137 0.875 1.740
Growth in electricity sales 0.013 0.035 −0.215 0.187
Price of electricity (log) 2.055 0.307 1.361 2.896
Production share renewable energies 0.011 0.028 0 0.248
Production share nuclear energy 0.177 0.182 0 0.808
Experience with ISO/RTO 3.796 4.492 0 14
Policy 1.822 1.632 0 6
Tax 1.199 1.200 0 4
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